A Mixed Finite Element Method on a Staggered Mesh for Navier-stokes Equations
نویسندگان
چکیده
In this paper, we introduce a mixed finite element method on a staggered mesh for the numerical solution of the steady state Navier-Stokes equations in which the two components of the velocity and the pressure are defined on three different meshes. This method is a conforming quadrilateral Q1 × Q1 − P0 element approximation for the Navier-Stokes equations. First-order error estimates are obtained for both the velocity and the pressure. Numerical examples are presented to illustrate the effectiveness of the proposed method.
منابع مشابه
Static Two-Grid Mixed Finite-Element Approximations to the Navier-Stokes Equations
A two-grid scheme based on mixed finite-element approximations to the incompressible Navier-Stokes equations is introduced and analyzed. In the first level the standard mixed finite-element approximation over a coarse mesh is computed. In the second level the approximation is postprocessed by solving a discrete Oseen-type problem on a finer mesh. The two-level method is optimal in the sense tha...
متن کاملThe Postprocessed Mixed Finite-Element Method for the Navier-Stokes Equations
A postprocessing technique for mixed finite-element methods for the incompressible Navier–Stokes equations is studied. The technique was earlier developed for spectral and standard finite-element methods for dissipative partial differential equations. The postprocessing amounts to solving a Stokes problem on a finer grid (or higher-order space) once the time integration on the coarser mesh is c...
متن کاملApplications of Mathematics
In this paper we propose a method for improving the convergence rate of the mixed finite element approximations for the Stokes eigenvalue problem. It is based on a postprocessing strategy that consists of solving an additional Stokes source problem on an augmented mixed finite element space which can be constructed either by refining the mesh or by using the same mesh but increasing the order o...
متن کاملStabilized finite element method for Navier-Stokes equations with physical boundary conditions
This paper deals with the numerical approximation of the 2D and 3D Navier-Stokes equations, satisfying nonstandard boundary conditions. This lays on the finite element discretisation of the corresponding Stokes problem, which is achieved through a three-fields stabilized mixed formulation. A priori and a posteriori error bounds are established for the nonlinear problem, ascertaining the converg...
متن کاملA new mixed FEM for the Stokes equations on complicated domains
We introduce a new finite element method, the composite mini element, for the mixed discretization of the Stokes equations on two and three-dimensional domains that may contain a huge number of geometric details. Instead of a geometric resolution of the domain and the boundary condition by the finite element mesh the shape of the finite element functions is adapted to the geometric details. Thi...
متن کامل